Subject programme

- 1. Subject name / subject module: Control Theory
- 2. Lecture language: English
- **3.** The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Ftield or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Repka Michal, dr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

Teaching activities with the tutor																				
Mode of study		Form of classes Tc														Total				
		sow	ECTS	Laboratory work	SOW	ECTS		sow	ECTS		sow	ECTS		sow	ECTS	 sow	ECTS	 sow	ECTS	ECTS
Full-time studies				22	28	2														2
Part-time studies						Z														2
Credit rigor				E	xam															

6. Student workload – ECTS credits balance: 1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)
Participation in lectures	-
Participation in laboratory classes	22
Preparation to laboratory classes	11
Independent study of the subject	7
Preparation of homeworks	6
Participation in an exam / graded assignment	-
Total student workload (TSW)	50
ECTS credits	2
* Student's workload related to trainings	50
Student's workload in classes requiring direct participation of academic teachers	22

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

- Recommended admission requirements none.
- Recommended duration of the subject is taken from the course plan.
- 8. Specific learning outcomes knowledge, skills and social competence:

	Specific learning outcomes for the subject		Teeshing	Methods for testing of				
Outcome symbol	Outcome description	Form	method	(checking, assessing) learning outcomes				
	Knowledge							
K_W05	A student has basic knowledge of control systems and regulators.	Laboratory	Inquin	Student learning				
K_W08	A student knows and understands selected specific issues in the field of control systems and practical applications of this knowledge.	work	methods	activities				
Skills								
K_U08	A student is able to plan and carry out experiments with regulators, including measurements of basic system characteristics.							
K_U14	A student is able to see and identify problems with configuring parameters of basic regulators.		Inquiry methods	Student learning activities				
K_U15	A student is able to assess the suitability and choose the appropriate methods tools and materials to create simple control system.							

Subject programme

9. Assessment rules / criteria for each form of education and individual grades

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final	
Lab reports	dst, db, bdb(3,4,5)	arithmetic mean (5,3,4)* 40%	1.6	
Homeworks	dst, db, bdb(3,4,)	arithmetic mean (5,3,4) * 10%	0,4	
Final exam	bdb (5)	5.0 * 50%	2,0	
Final result			4,0	
Grade		4,0/5 = 80%	db (4.0)	

10. The learning contents with the form of the class activities on which they are carried out

(Laboratory work)

- 1. Introduction to control engineering;
- 2. System modelling;
- 3. Time domain analysis;
- 4. Introduction to closed-loop control systems;
- 5. Design in the s-plane;
- 6. Design in the frequency domain;
- 7. Digital control systems design;
- 8. State-space methods;
- 9. Optimal control system design
- 11. Required teaching aids
 - a. Lecture multimedia projector
 - b. Laboratory classes specialist laboratory

12. Literature:

- a. Basic literature:
 - 1. Golnaraghi F., Kuo Benjamin C.: Automatic control systems, John Wiley & Sons, New York 2010, ISBN: 978-0-470-04896-2
 - 2. Nise Norman S.: Control systems engineering, John Wiley & Sons, Hoboken 2008, ISBN: 978-0-471-79475-2
 - 3. Dorf Richard C., Bishop Robert H.: Modern control systems. Upper Saddle River, 2008, ISBN: 978-0-13245192-5
- b. Supplementary literature:

Subject programme

- 1. Ogata Katsuhiko: Discrete-time control systems. 2nd ed., Upper Saddle River, 1995, ISBN: 0-13-034281-5
- 2. D.H. Hanssen: Programmable Logic Controllers: A Practical Approach to IEC 61131-3 using CODESYS, Wiley, ISBN: 9781118949214
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- **14.** Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	Repka Michal, dr inż.
3. Training	
4. Project classes	
5. Workshop classes	
6. Simulation game	
7. Language classes	